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A formalism, based upon Temple's formula, is presented for the determination of the self-consistent 
orbitals which determine the best upper and lower bounds of an electronic system. The results of use 

+ of this method for lower bounds to the H 2 ground state are compared to the application of other methods. 

Eine Methode, die auf der Formel yon Temple beruht, wird angegeben, um diejenigen selbst- 
konsistenten Orbitale zu erhalten, die die besten oberen und unteren Grenzen eines Elektronensystems 
bestimmen. Diese Methode wird auf die unteren Grenzen des H~- Grundzustandes angewandt. Die 
Resultate werden mit denjenigen anderer Methoden verglichen. 

Pr6sentation d'un formalisme, bas6 sur la formule de Temple, pour l'obtention des orbitales self- 
consistantes qui d4terminent les meilleures limites suphrieures et inf+rieures d'un syst6me 61ectronique. 
cette mhthode est appliquhe ~_ la limite inf6rieure de l'6tat fondamental de Hz- et comparhe aux 
r~sultats d'autres m~thodes. 

i .  Introduction 

A general  t rea tment  for excited states within the context  of self-consistent 
orbital  theory has been proposed by Fraga  and  Birss [1]. It is based u p o n  the 
generalized var ia t ional  me thod  of Weins te in  [8] : an  eigenvalue, I4, of the Hamil -  
t on i an  operator ,  _H, of the system under  considerat ion,  may be bracketed accord- 
ing to 

E--Al l2<_  W < E + A 1/2 (1) 

with 

A = (_//~[_/-/4~) - E 2 , 

and  �9 an  approx ima t ion  to the e igenfunct ion belonging to the eigenvalue W. 
In  their work, F raga  and  Birss chose to vary the trial function,  ~ ,  in order to mini-  
mize A. In  pre l iminary  calculat ions on  the hel ium a tom it has been found that  
it is difficult to achieve convergence to a chosen state; this is due to the fact that  
there is no  way of explicitly cons t ra in ing  the var ia t ional  procedure  to direct it 

�9 Present address: Department of Chemistry, Massachusetts, Institute of Technology, Cambridge, 
Massachusetts 02139, USA. 
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to the given state. The constraint must be implicitly imposed by a judicious choice 
of the trial function. 

An alternative approach is given below which, if it converges at all, converges 
to a particular chosen state. It is based upon Temple's formula for upper and lower 
bounds [7] which, in addition to the above feature, gives more accurate estimates 
for the bounds than the Weinstein formula, using the same approximate trial 
function. 

The Temple formula may be written as 

Bi = E + A/(E - E~) (2) 

where Bz is an upper or lower bound to the exact eigenvalue, W~, of the Hamil- 
tonian operator, as ? = i - 1 or i + 1 . /~  is an approximation to W~. Kato [6] has 
shown that if the interval (/~i- 1,/~i +,) contains only one non-degenerate eigenvalue, 
and if the inequality 

a < (E - /~ ,_ , )  (/~,+~ - E) (3) 

is satisfied, then upper and lower bounds, B~, BI, exist such that 

E+ A =B'<W~<B"=E+ A (4) 
E - E l +  1 E - E l _  1 " 

Eq. (4), hereinafter referred to as the Temple-Kato formula, may be used in 
conjunction with any trial function which leads to satisfaction of Eq. (3), but of 
particular interest here are those functions which give the maximum lower bound 
and minimum upper bound, as distinct from that function which yields the 
best energy, E. 

2. The Self-Consistency Equations 

The present work is concerned with the traditional orbital form in which the 
trial function is written as a Slater determinant consisting of occupied orbitals 
(or a linear combination of determinants if this is required for satisfaction of 
angular momentum and symmetry eigenvalue relations.) In this approximation 
E and A are given by, 

E=2 ZfiaH~ =+ Z Z fia f~(2a'a,~'~'PJiZ, F,'Ue-b'Z,~'~'aKa,~'ua) , (5) 
iAcL iA~ rage 

a =2Zfi*XiZ=+ Z Z fiaf~A'Z,,~ "p 
i2~t i2ct m#fl 

+ Z Z Zf iz  f~f,~BiZ~'fl '~'w (6) 
iAo~ m#fl n w  

v l m n p  
i,~a rn,ufl nv~ p~a 

using notation and symbols defined in Ref. [1]. 
The extrema of Eq. (2) with respect to variation in the orbitals, r  are obtained 

by setting the variation in B to zero, subject to the constraints of orthonormality 
14" 
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among the orbitals of a given symmetry, here taken to be 2e. One has, 
6A A 6E 

a B = a E +  / ~ _ ~  ( E _ ~ , )  2 = 0 ,  

which yields 

with 

(7) 

fiE + ~o' fiA = 0 (8) 

co ' -  E - / ~  (9) 
(E - ~ ) 2  _ z 

The trial function which, under variation, satisfies Eq. (8) will serve as the func- 
tion to obtain the best bound when used in Eq. (2). In particular, assume that one is 
interested in obtaining upper and lower bounds to the eigenvalue of the k 'h 
state. For the upper bound of the k th state one would need Ek-1, an approximation 
to the eigenvalue of the (k - 1) th state. With/~k-1 and a q~, one would use Eq. (8) 
to determine the q~i,, which gives the best upper bound to Wk. The �9 which 

min satisfies Eq. (8) in this case, ~bk , must be such as to yield the minimum value of 
Eq. (2). 

For the lower bound one would use /]k+l and determine by use of Eq. (8) 
the q~kmaxwhich would yield the best lower bound. This function would yield the 
best lower bound obtainable from a function of type 4,, when it was substituted 
into Eq. (2). 

Thus, so long as one knows an/~k+ 1 and an Ek-1, one is insured by Kato's 
theorem that when Eq. (2) is used one will determine bounds to the k 'h state; 
Eq. (8) also guarantees that the bounds are the best obtainable from a function 
of the form 4~. It should be noted that from Kato's theorem the inequality 
A < ( E - / ] k - l )  (/~k+~- E) must be satisfied. This does not however imply that 
a must bracket Wk, i.e., E -  V ~ <  wk < E + ]/~a-, as seems to have assumed in 
the literature in the past [2=4]. On the contrary, A as determined by a q~kmax may be 
such that E - ]/A < Wk +, < E + V~, and yet this A and (~k max will serve to give 
a lower bound to the k th state. The only restriction on a is that it must satisfy 
the inequality given in Kato's theorem. 

For the purposes of Eq. (8), aE and 6A are given as functions of the variations, 
6q~} ", in the orbital, q~}=, of symmetry designation 2~, 

u tt/~ +.., 1, + >  + oomp ex  on u ato l, 

aa -- y~ {<a+~'is/I-2_x + 2 ,;.,"a".," 
i.a.a [ L m # p  

,,,e ,~r (11) 
+ Z Z g e, r f~c, , .~.< +,*. 

m#~ nv? pr J m J n .J p = m n p  j I " 

+ complex conjugate l 

with the notation and symbols of Ref. [1]. 
The orthonormality conditions give rise to the variational constraints, 

<~1~> =a~. 
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Using the method of undetermined multipliers, with -0)"  the multipler for the 
i , j  th constraint, the totality of terms to be added to Eq. (8) is 

- g Z Eo ," + �9 (12) 
i 2 ~ j Z a  

Addition of Eqs. (8) and (12) leads to, after some manipulation, 

{ (6~bi~ [_FiZ" 4~i a ' -  ~ 0 .z.~'~.~'\ conjugate I = 0  (13) i~ . vj, w / + complex 

where 

Fff== f,z/2(H_'+ co'_X)+ ~ f~(_Nmua + co'_AU~ ") 
muP 

+ Z Z f  uf;w'-B"s '~y (14) 
m l ~  nv? 

a m  .., n .., p ~ --.~mnp 
raliB nv7 p~a  J 

Since Eq. (13) holds for any arbitrary infinitesimal variations 6cb~, ,5~  ~, it follows 
that 

-V? Z (153 
J 

with a similar equation involving q~/~=, 0}=. Since the Lagrangian multipliers are 
elements of an Hermitian matrix, the equations are equivalent. 

In the general open-shell system, the coupling operator defined by Fraga and 
Birss [1] can now be employed to transform Eq. (15) to a pseudo-eigenvalue 
equation, 

R_ a" ~br = 0~" q$2=. (16) 

In closed-shell systems, with all_Fff = equal, the orbitals may be subjected to a linear 
transformation which leaves the _F operator invariant and produces a diagonal 
matrix of Lagrangian multipliers and the pseudo-eigenvalue equation, 

iF qS~ a" = 0~" q${~. (17) 

3. Application to H2 + 

In applying this formalism the most practical method is to expand the orbitals 
in some suitable basis set, Z~ ~, 

C i p  Z p  �9 
p 

Eqs. (16) and (17) can then be expressed in terms of the linear coefficients, c~,, 
and the matrix representations of the _R z~ or F operators under the basis set. 
The procedure is then the familiar one of any iterative self-consistency approach, 
with the solutions of the pseudo-eigenvalue equations being used to construct 
the operators (or their matrix representations), until self-consistency is attained. 
The resultant orbitals are then used to calculate E~, the approximate eigenvalue of 
the Hamiltonian operator, and the bound, Eq. (2). 



196 R . P .  M e s s m e r  a n d  F. W. Birss:  

It should be noted that the procedure must be carried out independently for 
the upper and lower bound to a given state, using the appropriate/~y. In the iterative 
procedure, with M occupied orbitals of symmetry 2e, this requires using the highest 
M eigenvectors in forming the operator consistent with the lower bound, and the 
lowest M eigenvectors when dealing with the upper bound. 

The method has been applied to the ground state of the hydrogen molecule 
ion. Since the upper bound is best determined by the variational method for lowest 
states, only the lower bound is considered here. The trial function used is a generali- 
zation of the James function [5], 

= e - ~  ~ c ,~: '  
i 

where r and t/ are the variables in the confocal elliptic coordinate system. The 
integrals were evaluated using, in part, the analytical forms of Goodisman and 
Secrest [3]. 

T a b l e  1. Lower bounds, in Hartree units, for the H~ system 

E x p a n s i o n  l eng th  I II III 

2 - 1.10388 - 1 . 1 0 4 0 3  - 1 . 1 0 7 0 6  
- 1 . 1 3 7 9 7  - 1.14724 

4 - 1.10286 - 1.10303 
- 1.12509 

E x a c t  e igenva lue  a t  2 a.u.  i n t e r n u c l e a r  d i s t ance  is - 1 . 1 0 2 6 3  

Har t r ee s .  

Table 1 gives the lower bounds determined by: I. the method of this paper; 
II. minimization of A, according to Ref. [1]; III. Goodisman and Secrest. The 
latter calculation was based on two terms of Eq. (18), and a two dimensional grid 
over e and q/c  o. Where required, the value of/~1 was taken as -0.36087, the 
exact eigenvalue for the first excited state of I2~ symmetry at 2 a.u. internuclear 
separation. 

In II and III the function was obtained by minimization of A. Subsequent 
substitution of this value, and the corresponding approximate energy, into the 
Temple formula gave the upper of the pairs of values appearing in Table 1. The 
lower of the pairs is that obtained from the Weinstein formula. The results of II 

T a b l e  2. Comparison of lower bounds 

N o .  Basis A B o u n d  c~ V a r i a t i o n a l  
func t ions  s cheme  

2 0 .001422 - 1 . 1 0 4 3 0  1.355 E 
2 0 .001444 - 1.10388 1.320 B 

3 0 .000903 - 1.10367 1.355 E 
3 0 .000790 - 1 . 1 0 2 8 6  1.310 B 
5 0 .000915 - 1 . 1 0 2 8 6  1.310 E 
5 0 .000790 - 1.10286 1.310 B 
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and I I I  differ because  in II  the coefficients were de te rmined  au tomat i ca l ly ;  these 
do not,  except  coincidenta l ly ,  fall on the grid chosen in III.  

The  bounds  o b t a i n e d  by the m e t h o d  deve loped  here  (var ia t ional  scheme B) 
and  those  ob t a ined  by  using the funct ion which minimizes  the energy in the 
T e m p l e - K a t o  fo rmula  (var ia t iona l  scheme E) are  c o m p a r e d  in Table  2. 

As expected,  the b o u n d  de t e rmined  by the present  m e t h o d  based  u p o n  Temple ' s  
fo rmula  is consis tent ly  the best. Fur the r ,  the use of  the funct ion ob t a ined  by  A 
min imiza t ion  (II, Tab le  1) or  by  E min imiza t ion  (scheme E, Table  2) in the Temple  
fo rmula  does  no t  achieve nea r ly  as good  a resul t  as the a priori use of the m e t h o d  
deve loped  in this paper ,  emphas iz ing  the need  to d is t inguish  the quan t i ty  var ied  
to ob ta in  the function.  
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