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A formalism, based upon Temple’s formula, is presented for the determination of the self-consistent
orbitals which determine the best upper and lower bounds of an electronic system. The results of use
of this method for lower bounds to the H ground state are compared to the application of other methods.

Eine Methode, die auf der Formel von Temple beruht, wird angegeben, um digjenigen selbst-
konsistenten Orbitale zu erhalten, die die besten oberen und unteren Grenzen eines Elektronensystems
bestimmen. Diese Methode wird auf die unteren Grenzen des H; Grundzustandes angewandt. Die
Resultate werden mit denjenigen anderer Methoden verglichen.

Présentation d'un formalisme, basé sur la formule de Temple, pour 'obtention des orbitales self-
consistantes qui déterminent les meilleures limites supérieures et inférieures d’un systéme électronique.
Cette méthode est appliquée & la limite inférieure de I’état fondamental de Hj et comparée aux
résultats d’autres méthodes.

1. Introduction

A general treatment for excited states within the context of self-consistent
orbital theory has been proposed by Fraga and Birss [1]. It is based upon the
generalized variational method of Weinstein [8]: an eigenvalue, W, of the Hamil-
tonian operator, H, of the system under consideration, may be bracketed accord-
ing to

E—~AY2<W<E+ A2 1)
with

E=(9|H|?)

A=(H®|HP)~E,

and @ an approximation to the eigenfunction belonging to the eigenvalue W.
In their work, Fraga and Birss chose to vary the trial function, @, in order to mini-
mize 4. In preliminary calculations on the helium atom it has been found that
it is difficult to achieve convergence to a chosen state; this is due to the fact that
there is no way of explicitly constraining the variational procedure to direct it
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to the given state. The constraint must be implicitly imposed by a judicious choice
of the trial function.

An alternative approach is given below which, if it converges at all, converges
to a particular chosen state. It is based upon Temple’s formula for upper and lower
bounds [ 7] which, in addition to the above feature, gives more accurate estimates
for the bounds than the Weinstein formula, using the same approximate trial
function.

The Temple formula may be written as

B;=E+A/(E—-E,) )

where B; is an upper or lower bound to the exact eigenvalue, W,, of the Hamil-
tonian operator, as y=i—1ori+1. E is an approximation to W,. Kato [6] has
shown that ifthe interval (E;_,, E,,) contams only one non- degenerate eigenvalue,
and if the inequality

AS(E—E;_))(Ei —B) 3)
is satisfied, then upper and lower bounds, BY, B!, exist such that

E+—4 _p<wszp-p+ 4 @

Ly —ELi-1
Eq. (4), hereinafter referred to as the Temple-Kato formula, may be used in
conjunction with any trial function which leads to satisfaction of Eq. (3), but of
particular interest here are those functions which give the maximum lower bound
and minimum upper bound, as distinct from that function which yields the
best energy, E.

2. The Self-Consistency Equations

The present work is concerned with the traditional orbital form in which the
trial function is written as a Slater determinant consisting of occupied orbitals
(or a linear combination of determinants if this is required for satisfaction of
angular momentum and symmetry eigenvalue relations.) In this approximation
E and 4 are given by,

E= 2Zf: HM*+ Z Z 7 fi2alerrb Jioeb _ plapb glauby (5)
ida ida myup
A=2Y fEXP+ Y Y fAfaAmr
ido ida muf
+2 Y Y S Sy Bl 6)
ila muf nvy

uDIDIDIDI IS LPAP e ehily

iAo mup nvy p&éd

using notation and symbols defined in Ref. [1].
The extrema of Eq. (2) with respect to variation in the orbitals, ¢* are obtained
by setting the variation in B to zero, subject to the constraints of orthonormality
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among the orbitals of a given symmetry, here taken to be Ao. One has,
o4 ASE

0B=06E+ ~ — ~— =0, )
E-E (E-E)
which yields

SE+w 64=0 8)

with N

E—E
fz—_———-——y . 9
CEE-E)y-4 ®

The trial function which, under variation, satisfies Eq. (8) will serve as the func-
tion to obtain the best bound when used in Eq. (2). In particular, assume that one is
interested in obtaining upper and lower bounds to the eigenvalue of the k™
state. For the upper bound of the k'® state one would need E, _;, an approximation
to the eigenvalue of the (k — 1) state. With E, _, and a &, one would use Eq. (8)
to determine the ®§™, which gives the best upper bound to W,. The & which
satisfies Eq. (8) in this case, #™", must be such as to yield the minimum value of
Eq. (2).

For the lower bound one would use E,,, and determine by use of Eq. (8)
the &,"**which would yield the best lower bound. This function would yield the
best lower bound obtainable from a function of type @, when it was substituted
into Eq. (2).

Thus, so long as one knows an E,_, and an E,_,, one is insured by Kato’s
theorem that when Eq. (2) is used one will determine bounds to the k'® state;
Eq. (8) also guarantees that the bounds are the best obtainable from a function
of the form @. It should be noted that from Kato’s theorem the inequality
A<(E—E,_,) (E,., — F) must be satisfied. This does not however imply that
A must bracket W, ie., E —]/Z_S_ W.<E +1/Z, as seems to have assumed in
the literature in the past [2-4]. On the contrary, A as determined by a ¢,"*maybe
such that E ——]/Z< Wes1 <E+ [/Z, and yet this 4 and @ will serve to give
a lower bound to the k™ state. The only restriction on 4 is that it must satisfy
the inequality given in Kato’s theorem.

For the purposes of Eq. (8), E and 64 are given as functions of the variations,
8¢, in the orbital, ¢*, of symmetry designation Aq,

SE=2Y {((3(;5{1‘"|f,-’l [2H’ +3 f,ﬁlﬂ’} | 2> + complex conjugate}, (10)

ida mup

64=73 {<5¢%"|fﬁ‘ [2)_( + Y fuqne

iia muf

+Y YR B
2, LI, 1y

+2 2 Zf,#f;ffgﬂi’,f“"]lw

muf nvy p&d
+ complex conjugate}

with the notation and symbols of Ref. [1].
The orthonormality conditions give rise to the variational constraints,

(Pi*19i") =6y
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Using the method of undetermined multipliers, with —6}* the multipler for the
i, j'® constraint, the totality of terms to be added to Eq. (8) is
— Y Y [0} <0011 9]*> + 057 <6 " ¢7>]. (12)

ilajia

Addition of Egs. (8) and (12) leads to, after some manipulation,
Y {<5¢?“| Flrgl—-Y 0% f"‘> + complex conjugate} =0 (13)

ida

J

where

Fio= fi’?(ﬂ' + ' X)+ Y fANE + o 44F)
mup

+ ) Y SRS o B (14)

myuf nvy
t 23 TS el Gl ).
mpp nvy péo
Since Eq. (13) holds for any arbitrary infinitesimal variations d $?% 5 ¢, it follows
that

EF 1= 3 6 0f¢ (13
J

with a similar equation involving ¢/, 9. Since the Lagrangian multipliers are
elements of an Hermitian matrix, the equations are equivalent.

In the general open-shell system, the coupling operator defined by Fraga and
Birss [1] can now be employed to transform Eq. (15) to a pseudo-eigenvalue
equation,

gla l@zz=6:1ia ¢1M . (16)

In closed-shell systems, with all F* equal, the orbitals may be subjected to a linear
transformation which leaves the F operator invariant and produces a diagonal
matrix of Lagrangian multipliers and the pseudo-eigenvalue equation,

F ¢i* =03 ¢i*. 7

3. Application to H;

In applying this formalism the most practical method is to expand the orbitals
in some suitable basis set, x2*,

Aa __ A . A
i—z%h~
p

Egs. (16) and (17) can then be expressed in terms of the linear coefficients, Chs
and the matrix representations of the R** or F operators under the basis set.
The procedure is then the familiar one of any iterative self-consistency approach,
with the solutions of the pseudo-eigenvalue equations being used to construct
the operators (or their matrix representations), until self-consistency is attained.
The resultant orbitals are then used to calculate E;, the approximate eigenvalue of

the Hamiltonian operator, and the bound, Eq. (2).
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It should be noted that the procedure must be carried out independently for
the upper and lower bound to a given state, using the appropriate Ey. Intheiterative
procedure, with M occupied orbitals of symmetry Aa, this requires using the highest
M eigenvectors in forming the operator consistent with the lower bound, and the
lowest M eigenvectors when dealing with the upper bound.

The method has been applied to the ground state of the hydrogen molecule
ion. Since the upper bound is best determined by the variational method for lowest
states, only the lower bound is considered here. The trial function used is a generali-
zation of the James function [5],

b=e S e

where £ and # are the variables in the confocal elliptic coordinate system. The
integrals were evaluated using, in part, the analytical forms of Goodisman and
Secrest [3].

Table 1. Lower bounds, in Hartree units, for the Hj system

Expansion length 1 1I In
2 —1.10388 ~1.10403 —1.10706
—1.13797 —1.14724
4 —1.10286 ~1.10303
~1.12509

Exact eigenvalue at 2 a.u. internuclear distance is —1.10263
Hartrees.

Table 1 gives the lower bounds determined by: I. the method of this paper;
II. minimization of A, according to Ref. [1]; III. Goodisman and Secrest. The
latter calculation was based on two terms of Eq. (18), and a two dimensional grid
over o and ¢;/c,. Where required, the value of E; was taken as —0.36087, the
exact eigenvalue for the first excited state of X ; symmetry at 2 a.u. internuclear
separation.

In II and III the function was obtained by minimization of 4. Subsequent
substitution of this value, and the corresponding approximate energy, into the
Temple formula gave the upper of the pairs of values appearing in Table 1. The
lower of the pairs is that obtained from the Weinstein formula. The results of 11

Table 2. Comparison of lower bounds

No. Basis A Bound o Variational
functions scheme

2 0.001422 —1.10430 1.355 E

2 0.001444 —1.10388 1.320 B

3 0.000903 —~1.10367 1.355 E

3 0.000790 —1.10286 1.310 B

5 0.000915 —1.10286 1.310 E

5 0.000790 —1.10286 1.310 B
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and III differ because in II the coefficients were determined automatically; these
do not, except coincidentally, fall on the grid chosen in III.

The bounds obtained by the method developed here (variational scheme B)
and those obtained by using the function which minimizes the energy in the
Temple-Kato formula (variational scheme E) are compared in Table 2.

Asexpected, the bound determined by the present method based upon Temple’s
formula is consistently the best. Further, the use of the function obtained by 4
minimization (II, Table 1) or by E minimization (scheme E, Table 2) in the Temple
formula does not achieve nearly as good a result as the a priori use of the method
developed in this paper, emphasizing the need to distinguish the quantity varied
to obtain the function.
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